

Towards Context-aware Intrusion Detection in Individual-oriented Information Systems: **An Empirical Study on Android Malware**

Paper at the 21st International Conference on Network and Service Management (CNSM2025), Bologna, Italy

PhD Student:

Tien NGUYEN

Supervisors:

Guillaume DOYEN, IRISA / IMT Atlantique

Daniela DRAGOMIRESCU, LAAS-CNRS / INSA Toulouse

Renzo E. NAVAS, IRISA / IMT Atlantique

Eric ALATA, LAAS-CNRS / INSA Toulouse

Outline

I. Background

II. State of The Art

III. Proposed framework

IV. Evaluation

V. Conclusion

Outline

I. Background

II. State of The Art

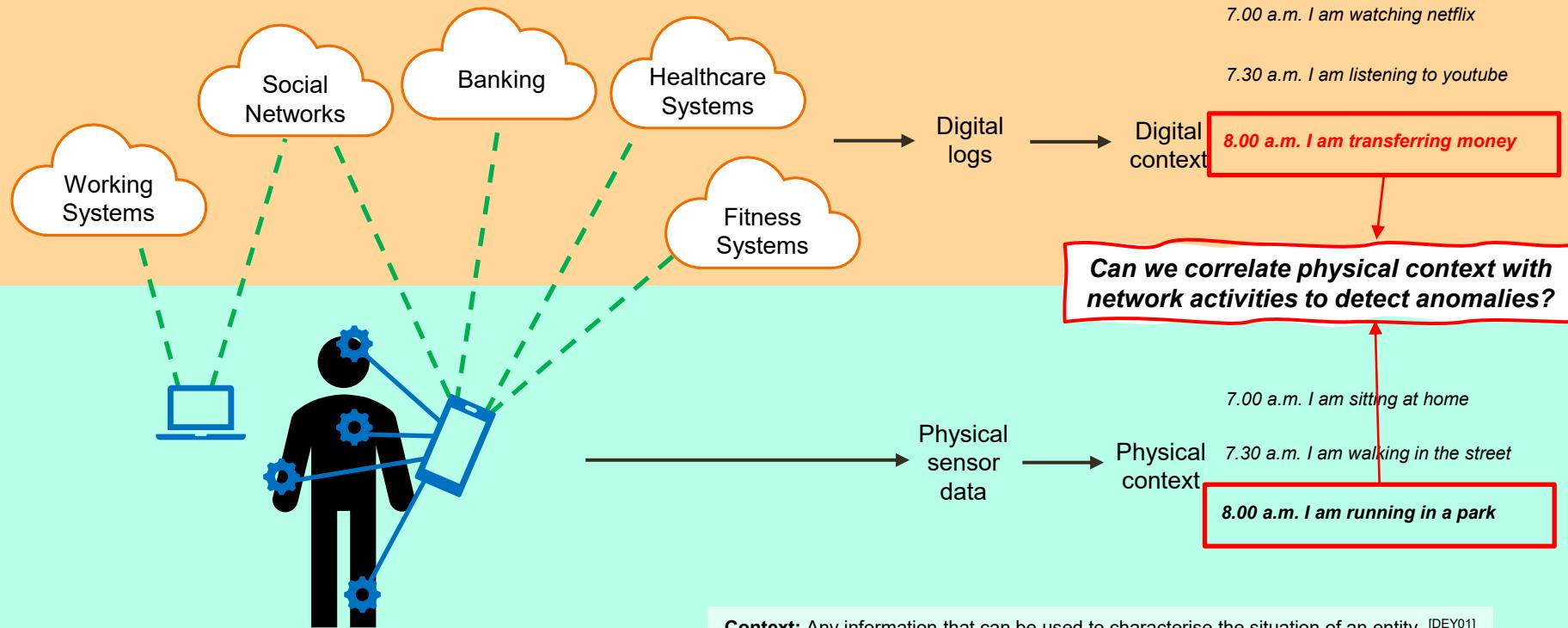
III. Proposed framework

IV. Evaluation

V. Conclusion

Background: Physical vs Digital context

Digital world



Physical world

Context: Any information that can be used to characterise the situation of an entity. [DEY01]
[DEY01] Dey, Anind K. "Understanding and using context." *Personal and ubiquitous computing* 5 (2001): 4-7.

Outline

I. Background

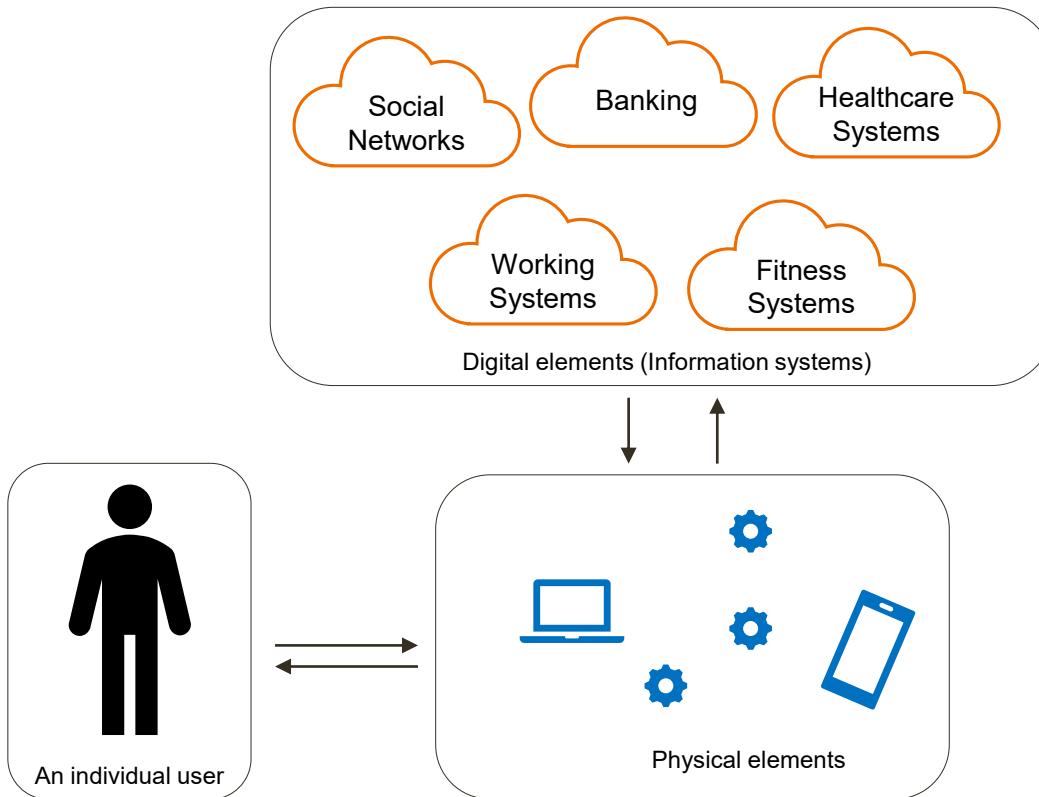
II. State of The Art

III. Proposed framework

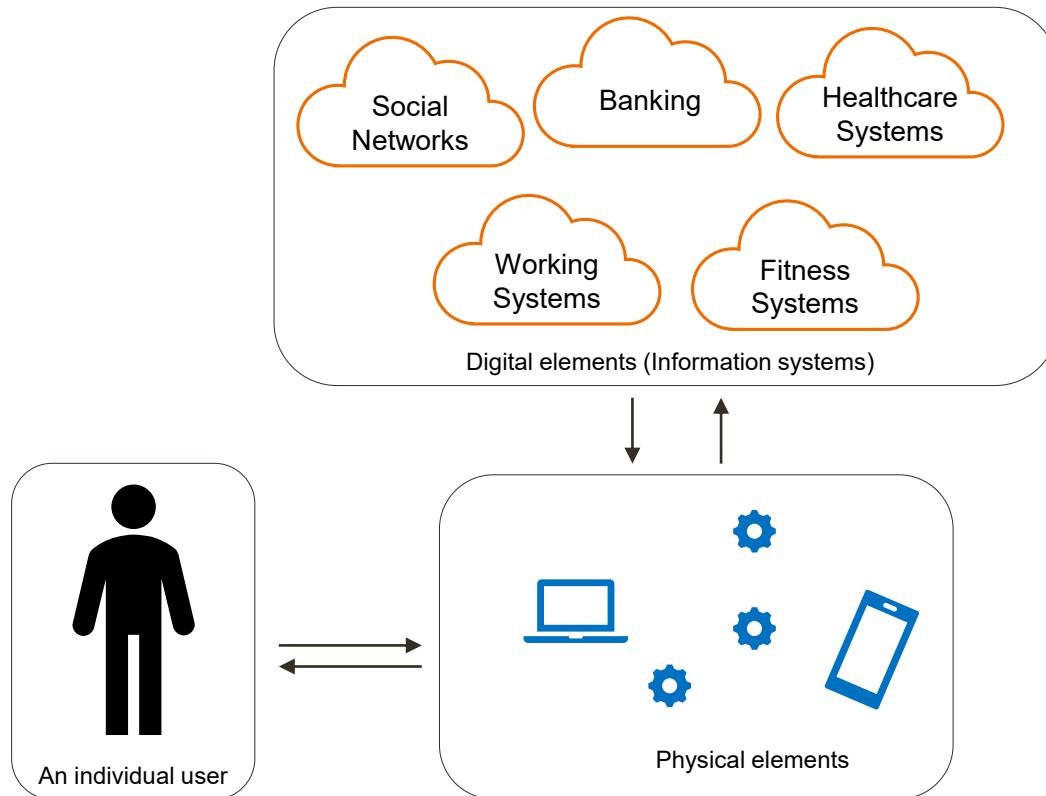
IV. Evaluation

V. Conclusion

Individual-oriented Information System (IIS)



Individual-oriented Information System (IIS)

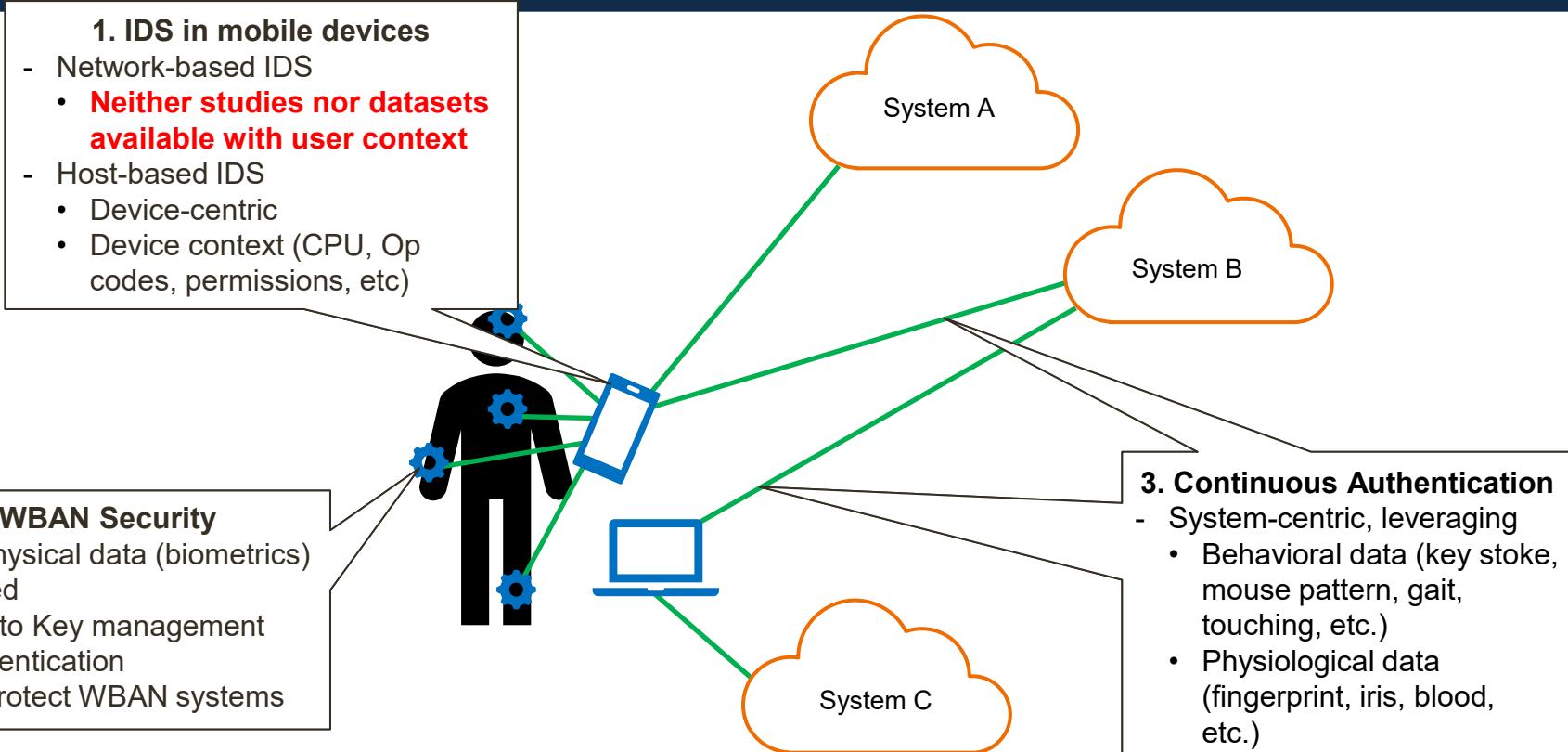


Limitations of security solutions in the literature

- System-specific
 - Require specific integration between client and server components
- Device-specific
 - Intrusive control and management
- ***Fail to protect*** against attacks where the adversary has sufficient knowledge to bypass these isolated solutions

The IIS considers the global context (digital + physical) of a user

SoTA: User physical contextual data in security solutions



Research Question

*Can a user's **physical contextual data** enhance the performance of **network intrusion detection**?*

Outline

I. Background

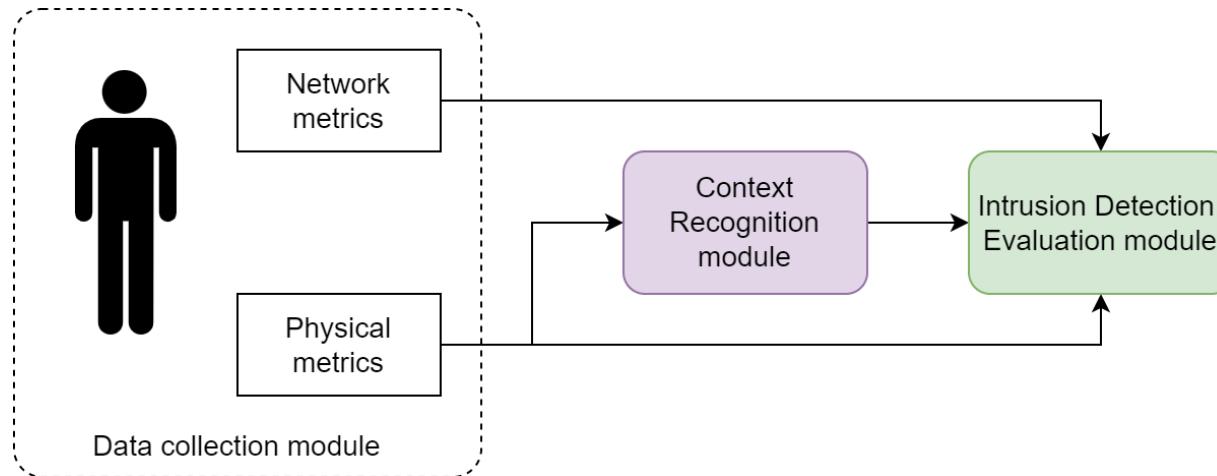
II. State of The Art

III. Proposed framework

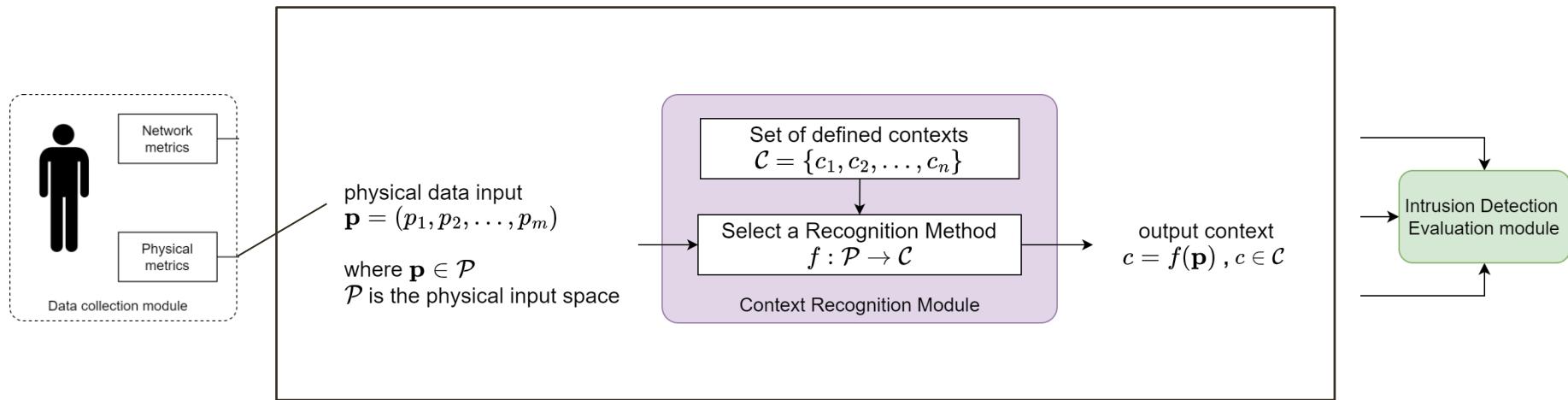
IV. Evaluation

V. Conclusion

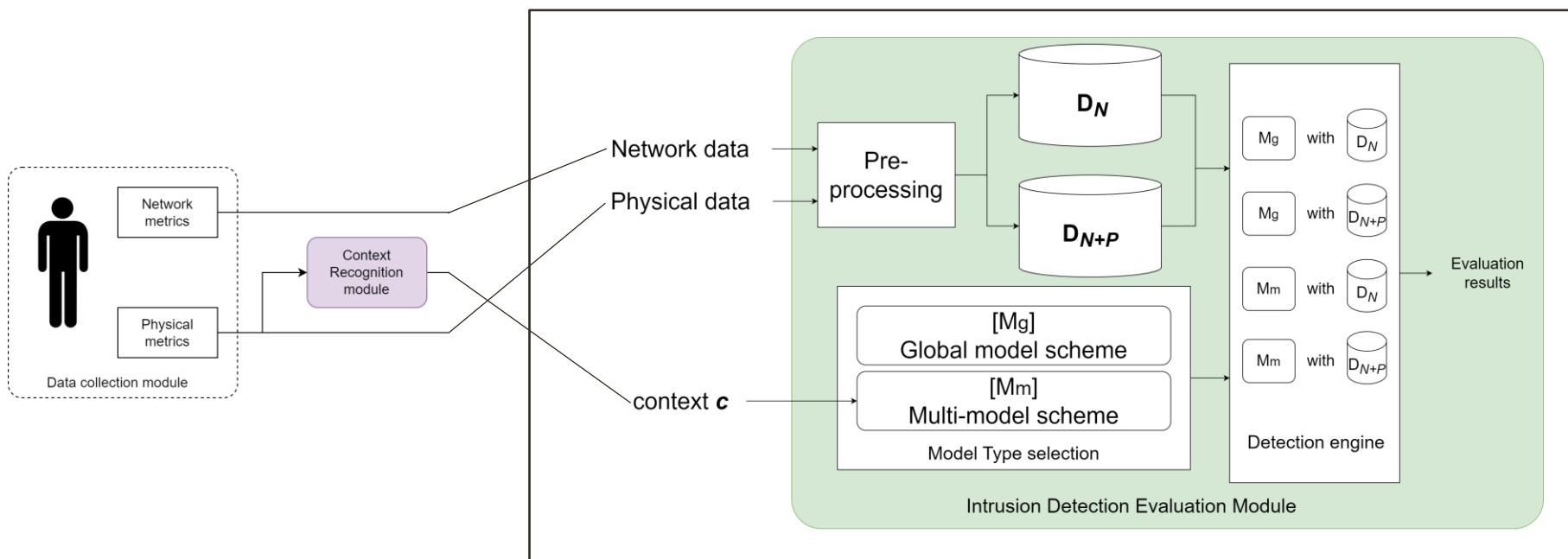
Overview



Context Recognition Module



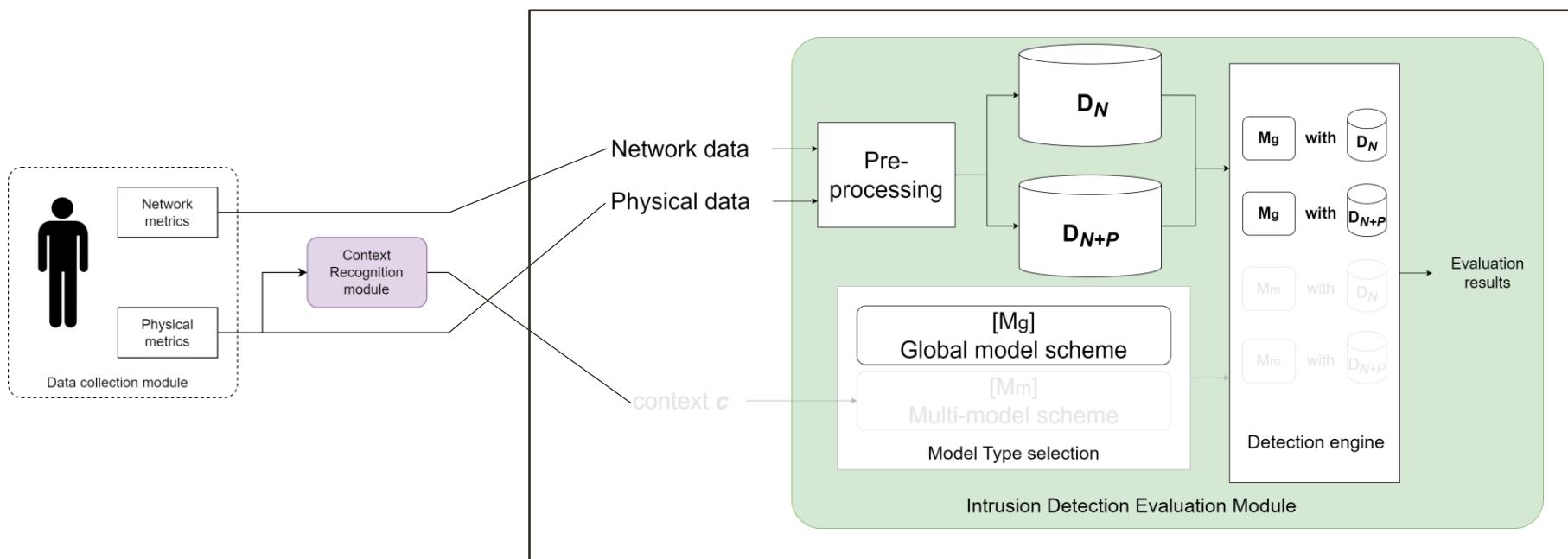
Intrusion Detection Evaluation Module



D_N : Dataset with network-only features (netflow-based features)

D_{N+P} : Dataset with network + physical features (accelerometer, ambient light, user speed)

Evaluation Scope



D_N : Dataset with network-only features (netflow-based features)

D_{N+P} : Dataset with network + physical features (accelerometer, ambient light, user speed)

Outline

I. Background: Individual-oriented Information System (IIS)

II. State of The Art

III. Proposed framework

IV. Evaluation

V. Conclusion

Dataset

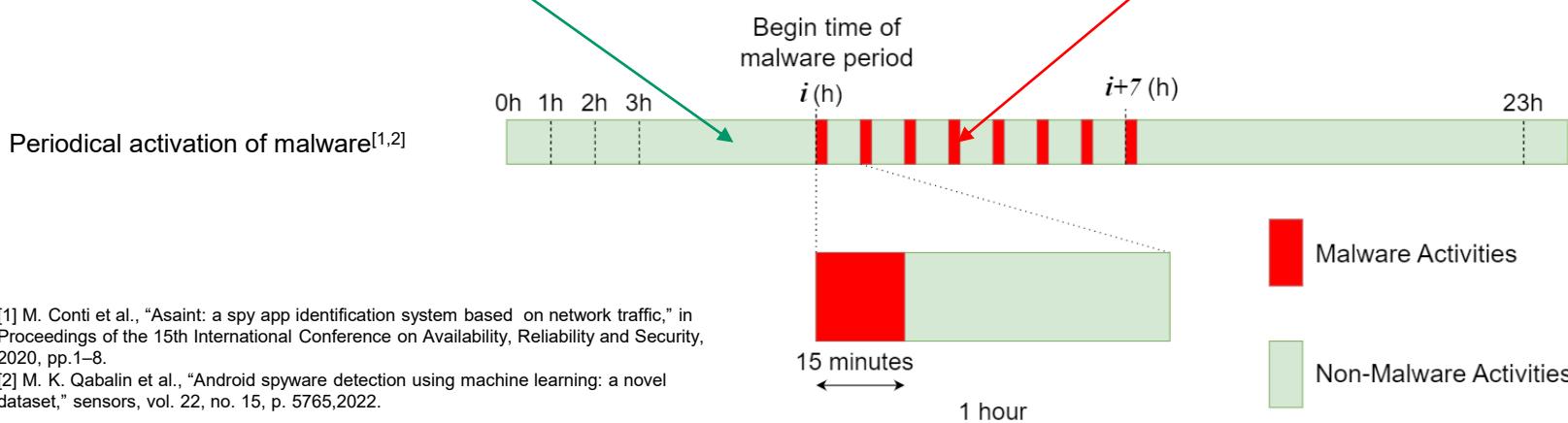
Benign data

Our in-situ data collection experiment
User's daily activities (2 x 24h),
From a personal smartphone

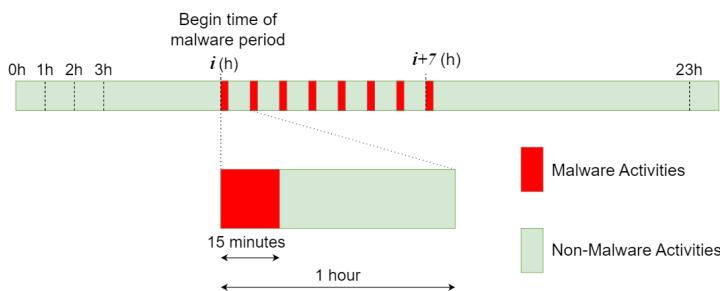
Malware data

Extracted from CIC-AndMal2017 dataset

- 5 Adware families
- 8 captures / family
- 15 minutes / capture



Injection and Evaluation Pipeline



Imbalanced dataset

With each malware in [Ewind, Feiwo, Gooligan, Kemoge, Youmi]:

Inject 8 captures starting from hour i ($i = 0, 1, \dots, 23$)

With each injection: Do the detection evaluation

Repeat 10 times:

Randomly split the dataset into train/validate/test set

Create a machine learning model (**XGBoost**)

Hyper-parameter turning

Cross Validation

Record the evaluation metric (**PR AUC**) on testing set

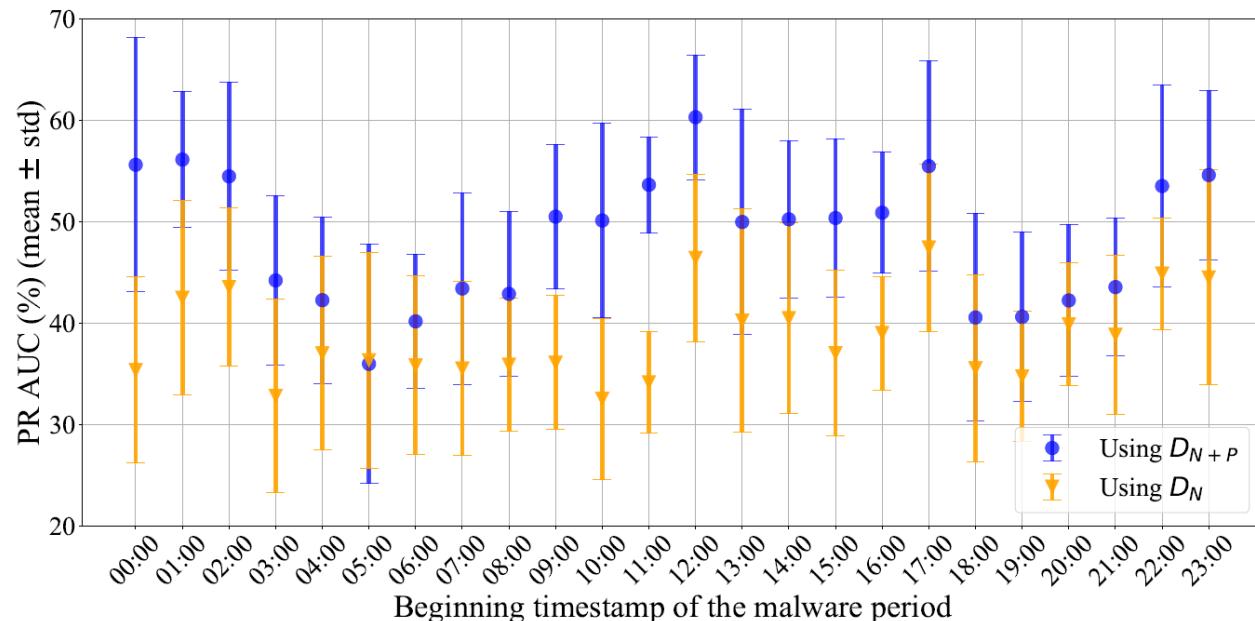
Aggregate the metrics over 10 trials

Aggregate the results over 24 injection of current malware

Aggregate the results across all malware families

Results (1/4)

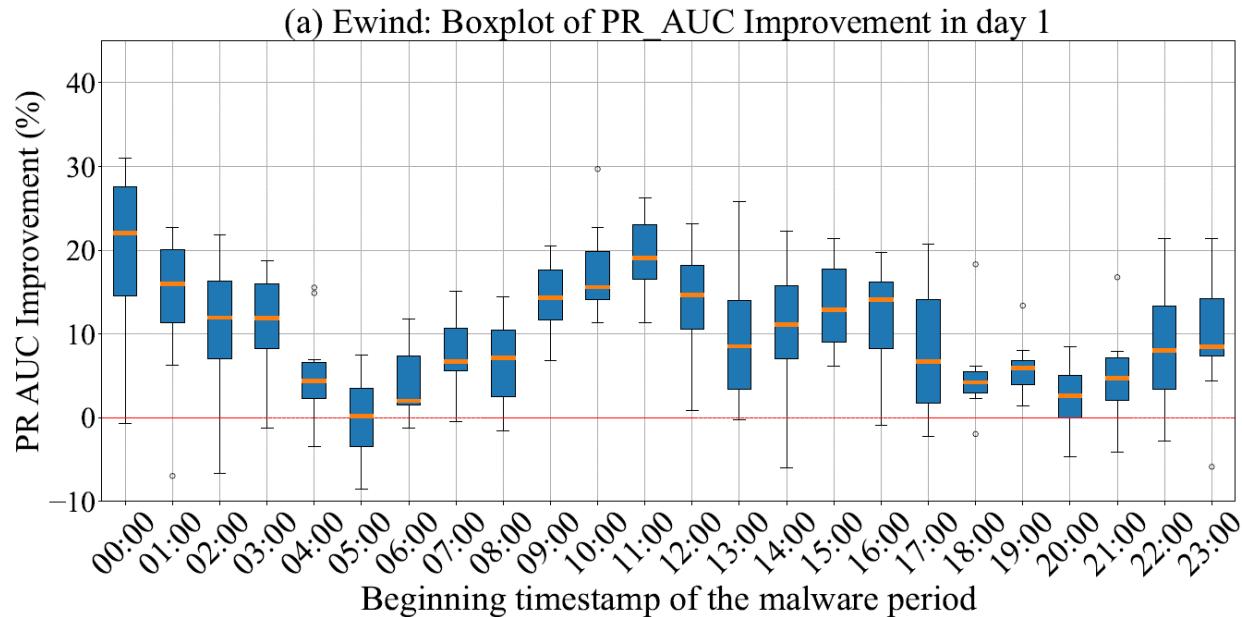
(a) Comparison of PR AUC between using D_{N+P} and D_N



Note: PR AUC_{Random guesser} = # positive samples / # all samples (= 8.3% in this work)

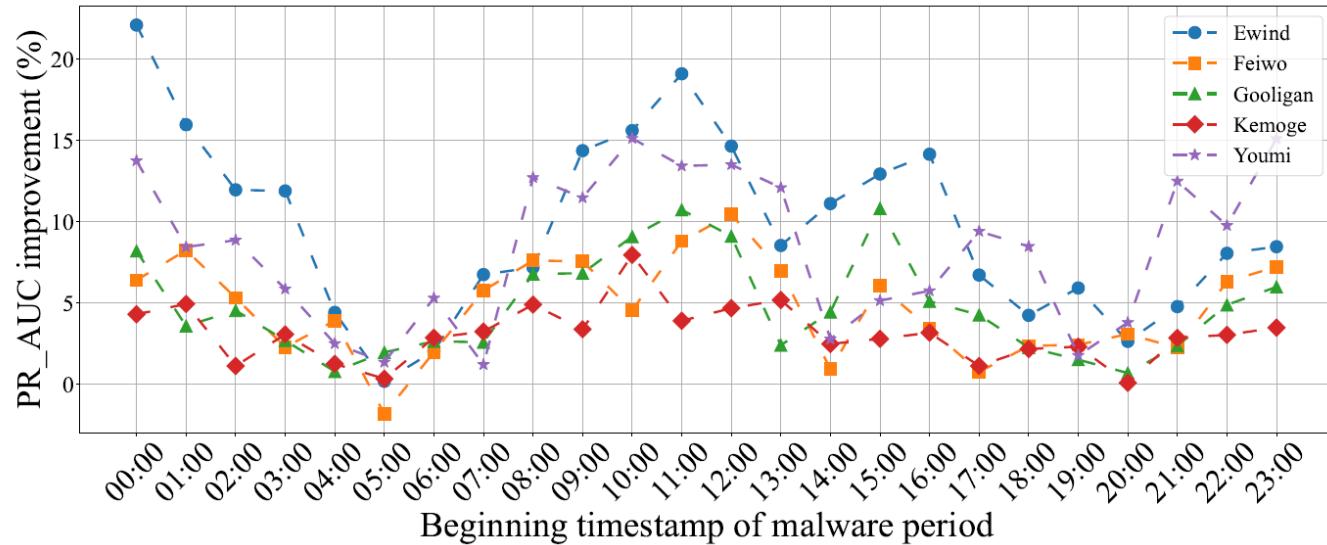
Results (2/4)

(b) PR AUC Improvement (= PR AUC using D_{N+P} - PR AUC using D_N)



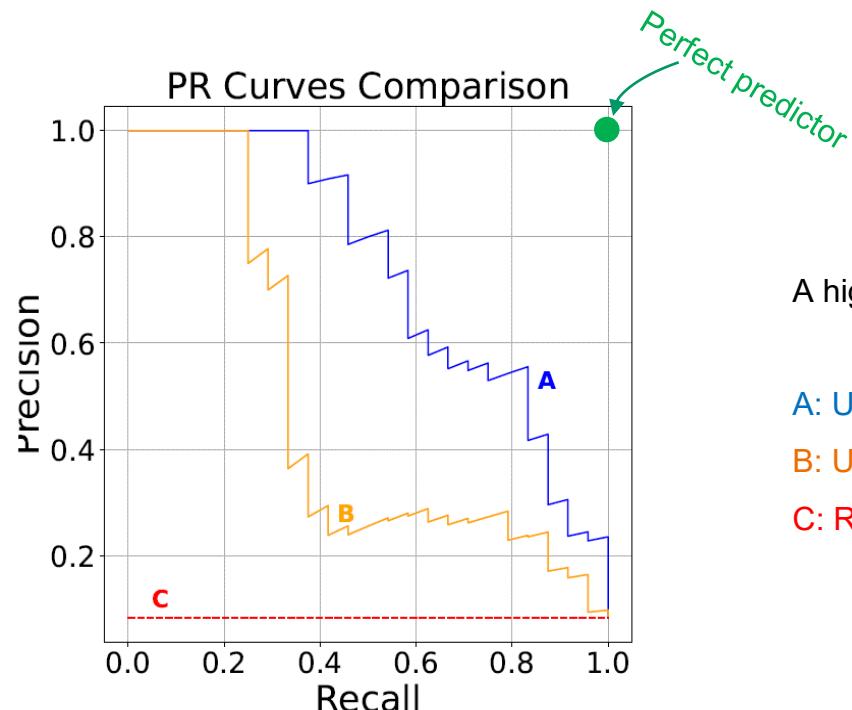
Results (3/4)

(c) PR AUC Improvement (mean values) across 5 malware families



Results (4/4)

(d) PR curve comparison at a specific timestamp (00h00, day 1)



A higher PR AUC indicates better performance.

A: Using D_{N+P} PR AUC = 0.7393

B: Using D_N PR AUC = 0.4767

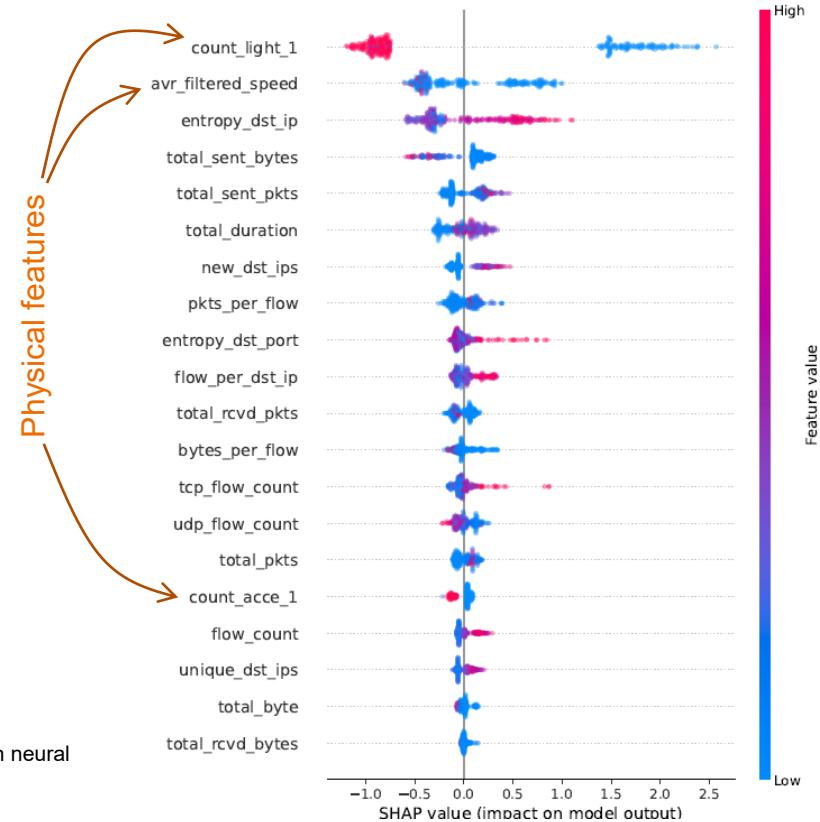
C: Random guesser PR AUC = 0.0830

Explanation by SHAP

- The **SHAP** (SHapley Additive exPlanations) methodology^[3]
 - A game-theoretic approach
 - Explain the output of machine learning models
 - Assign importance values to individual variables (features)

⇒ Specific physical signals are critical (ambient light, user speed)

⇒ The relevance of physical data in the decision-making of the IDS algorithm



[3] S. M. Lundberg and S.-I. Lee, "A unified approach to interpreting model predictions," *Advances in neural information processing systems*, vol. 30, 2017.

Outline

I. Background

II. State of The Art

III. Proposed framework

IV. Evaluation

V. Conclusion

Conclusion

Our contributions

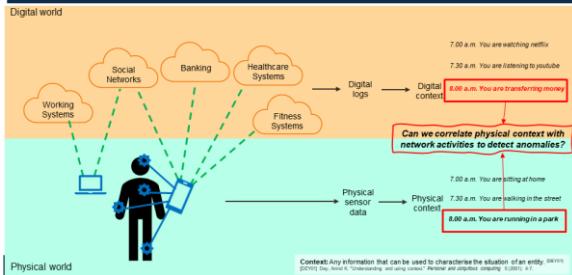
- **A new dataset** combining network traffic and physical sensor data collected from a real person's daily activities
- **A framework** leveraging user physical context data in network intrusion detection systems
- **An experimental validation** of the hypothesis that physical contextual information enhances NIDS performance

Ongoing work

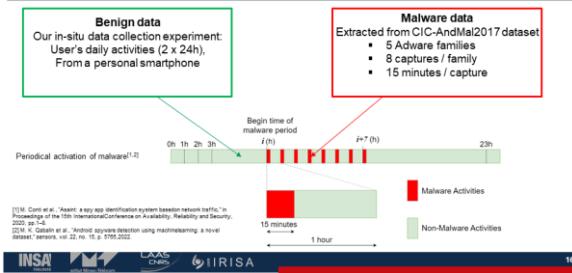
- **A large-scale dataset collection** campaign at IMT Atlantique
- Unsupervised Learning methods; Multi-model Validation

Thank you!

Background



Dataset



SoTA: User physical contextual data in security solutions

1. WBAN-based IoT

- Network-based IoTs
 - Neither nodes nor datasets are shared with user context
- Host-based IoTs
 - Device-centric
 - Device context (CPU, Op codes, permissions, etc)

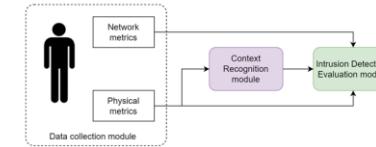
2. WBAN Security

- User physical data (biometrics) are used
 - Crypto Key management
 - Authentication
- ⇒ To protect WBAN systems

3. Continuous Authentication

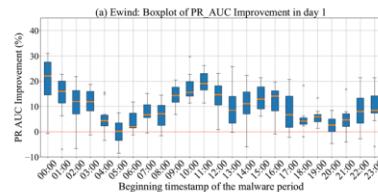
- System context leveraging
 - Behavioral data (key stroke, mouse pattern, gait, touching, etc.)
- Physiological data (fingerprint, irs, blood, ...)

Overview



Results (2/4)

b. PR AUC Improvement (= PR AUC using D_{N+P} - PR AUC using D_N)



Explanation by SHAP

- The **SHAP** (Shapley Additive exPlanations) methodology^[3] is a game-theoretic approach to explain the output of machine learning models.
- It quantifies feature attribution by assigning importance values to individual variables (features)

The SHAP plot shows that specific physical conditions are critical signals the model uses to differentiate normal from anomalous behavior.

⇒ Demonstrates the relevance of physical data in the decision-making of the IDS algorithm

[3] S. M. Lundberg and S.-I. Lee, "A unified approach to interpreting model predictions," *Advances in neural information processing systems*, vol. 30, 2017.

