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Background: Physical vs Digital context

Physical world

Digital world

Fitness

Systems

Working

Systems

Social

Networks

Banking

Physical 

sensor 

data

Digital 

logs
Digital 

context

Physical 

context

Context: Any information that can be used to characterise the situation of an entity. [DEY01]

[DEY01] Dey, Anind K. "Understanding and using context." Personal and ubiquitous computing 5 (2001): 4-7.

7.00 a.m. I am watching netflix

7.00 a.m. I am sitting at home

Healthcare

Systems

7.30 a.m. I am walking in the street

7.30 a.m. I am listening to youtube

8.00 a.m. I am running in a park

8.00 a.m. I am transferring money

Can we correlate physical context with 

network activities to detect anomalies?
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Individual-oriented Information System (IIS)
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Individual-oriented Information System (IIS)
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Limitations of security solutions in the literature

▪ System-specific

• Require specific integration between 

client and server components

▪ Device-specific

• Intrusive control and management

▪ Fail to protect against  attacks where the 

adversary has sufficient knowledge to bypass 

these isolated solutions

The IIS considers the global context 

(digital + physical) of a user
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SoTA: User physical contextual data in security solutions
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1. IDS in mobile devices

- Network-based IDS

• Neither studies nor datasets 

available with user context

- Host-based IDS

• Device-centric

• Device context (CPU, Op 

codes, permissions, etc)

3. Continuous Authentication

- System-centric, leveraging

• Behavioral data (key stoke, 

mouse pattern, gait, 

touching, etc.)

• Physiological data 

(fingerprint, iris, blood, 

etc.)
System C



Research Question
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Can a user’s physical contextual data enhance the 

performance of network intrusion detection?
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Overview
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Context Recognition Module
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Intrusion Detection Evaluation Module
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DN: Dataset with network-only features (netflow-based features)

DN+P: Dataset with network + physical features (accelerometer, ambient light, user speed)



Evaluation Scope
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DN: Dataset with network-only features (netflow-based features)

DN+P: Dataset with network + physical features (accelerometer, ambient light, user speed)
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Dataset
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Benign data

Our in-situ data collection experiment 

User’s daily activities (2 x 24h),

From a personal smartphone

Malware data

Extracted from CIC-AndMal2017 dataset

▪ 5 Adware families

▪ 8 captures / family

▪ 15 minutes / capture

Periodical activation of malware[1,2]

[1] M. Conti et al., “Asaint: a spy app identification system based  on network traffic,” in 

Proceedings of the 15th International Conference on Availability, Reliability and Security, 

2020, pp.1–8.

[2] M. K. Qabalin et al., “Android spyware detection using machine learning: a novel 

dataset,” sensors, vol. 22, no. 15, p. 5765,2022.



Injection and Evaluation Pipeline
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With each malware in [Ewind, Feiwo, Gooligan, Kemoge, Youmi]:

Inject 8 captures starting from hour i (i = 0, 1,.., 23)

With each injection: Do the detection evaluation

Repeat 10 times:

Randomly split the dataset into train/validate/test set

Create a machine learning model (XGBoost)

Hyper-parameter turning

Cross Validation

Record the evaluation metric (PR AUC) on testing set

Aggregate the metrics over 10 trials

Aggregate the results over 24 injection of current malware

Aggregate the results across all malware families

Imbalanced dataset



Results (1/4)
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(a) Comparison of PR AUC between using DN+P and DN

Note: PR AUC Random guesser = # positive samples / # all samples ( = 8.3% in this work)



Results (2/4)
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(b) PR AUC Improvement (= PR AUC using DN+P  - PR AUC using DN)



Results (3/4)
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(c) PR AUC Improvement (mean values) across 5 malware families



Results (4/4)
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(d) PR curve comparison at a specific timestamp (00h00, day 1)

A: Using DN+P PR AUC = 0.7393

B: Using DN PR AUC = 0.4767 

C: Random guesser PR AUC = 0.0830

A higher PR AUC indicates better performance.



Explaination by SHAP
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▪ The SHAP (SHapley Additive exPlanations) methodology[3]

• A game-theoretic approach 
• Explain the output of machine learning models
• Assign importance values to individual variables (features)

[3] S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting model predictions,” Advances in neural 

information processing systems, vol. 30, 2017.

 Specific physical signals are critical (ambient light, user speed)

 The relevance of physical data in the decision-making of the 
IDS algorithm
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Conclusion
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Our contributions

- A new dataset combining network traffic and physical sensor data collected from a real 

person's daily activities

- A framework leveraging user physical context data in network intrusion detection systems

- An experimental validation of the hypothesis that physical contextual information 

enhances NIDS performance

Ongoing work

- A large-scale dataset collection campaign at IMT Atlantique

- Unsupervised Learning methods; Multi-model Validation



Thank you!

25/25


