@ OLIRMM

State of the art of Lattice-Based
Threshold Cryptography

Gabrielle Beck, 05/12/2025

Postdoctorant au LIRMM avec Fabien et Katharina . L : ,
Some images in this presentation come from pictures

made by Eysa Lee licensed under CC BY 4.0

What is fully homomorphic encryption (FHE)?

Say you want to compute a function f on some inputs but...

« fis a very large function (in depth or width)
* you don’t have much (relative) computation power

 your function input is sensitive (or you need access to someone
else’s private data to do the calculation)

What is fully homomorphic encryption (FHE)?

What types of functions can this capture?

* Intensive statistical calculations on databases w. PII
- Computations on medical data, genomic sequencing

 Other cryptographic primitives (e.g. private information retrieval)

What is FHE?

pf A public/private key pair

My
super-

7Z3 W P
«, data ;—/

y

What is FHE?

y

POBAnTD
m*Qo
0O0Qo
oM og

What is FHE?

y

Pooando

m»Qo
\ 0oQo

) ;/f

What is FHE?

erpetr
m Qo
00oQo
omnag

”

\~
£ ¢

oguao
O£

Nl

What is FHE?

What is FHE?

What if we want different trust assumptions?

Suppose we have more than one client that wants to participate in the
computation... can we do the same thing as before?

e
Sy of

Goal: Compute f(xl, Xy, x3)

What if we want different trust assumptions?

Suppose we have more than one client that wants to participate in the

computation... can we do the same thing as before?
‘Jg

= A

Goal: Compute f(xl, Xy, x3)

What if we want different trust assumptions?

Suppose we have more than one client that wants to participate in the
computation... can we do the same thing as before?

Goal: Compute f(xl, Xy, x3)

What if we want different trust assumptions?

Suppose we have more than one client that wants to participate in the
computation... can we do the same thing as before?

6’.1_0_0'\

—
‘*’S&%
-8

Problem: We don’t want to trust just one client!

Break up the secret key! (Use Threshold Cryptography)

Secret key is split into secret key shares f f f -— f

er:os

— 5 —

/ -

2

2

Break up the secret key! (Use Threshold Cryptography)

P it

/\
S

Break up the secret key! (Use Threshold Cryptography)

2

—dl
I flxgs .. x) I v

All parties combine decryption shares
to get a result!

2

Lattice-based cryptography

 Threshold FHE schemes in cryptography are built off of lattice-based
assumptions

« Most constructions from unstructured lattices in some shape or form rely
on the learning with errors problem (LWE)

Learning with Errors (high level)

 Distinguish “noisy samples” from a matrix multiplication with uniformly
random values

‘A ‘A I+)%(‘A u

Structure of decryption for LWE-based constructions

* Decryption for these schemes is usually simple

. Ciphertext is a vector and an element (¢, ¢,) € Z)) X Z,,
« We decrypt using a secret key § € Zg’l
« Compute ¢, — (5,¢;) ¥ m+e

 Round off the error e

Structure of decryption for LWE-based constructions

* Decryption for these schemes is usually simple

. Ciphertext is a vector and an element (¢, ¢,) € Z)) X Z,,
« We decrypt using a secret key § € Zg’l

« Compute ¢, — (5,¢;) ¥ m+e

e Round off the error e

Important Note! e depends on s (normally fine for single decryptor setting)

A template for Threshold FHE from lattices

. Linear secret sharing (LSS) can allow us to secret share a vector s € Z q into

multiple shares 57, ..., S,
« Given a large enough set T C [n], and shares 5, ..., 51, there exists
coefficients wy, ..., wysuch that you can recover the secret vector

T
S = Z WzSz
=1

A template for Threshold FHE from lattices

« Split the secret key for the encryption scheme into shares

* During decryption do the first part of “normal decryption” on the ciphertext
 Works because reconstruction is linear
Partial decryption on (¢}, ¢,) can be computed as: ¢/ = (¢, sk;) + e;

Shares can be combined to get output as res = ¢, — Z WiC;

l

A template for Threshold FHE from lattices

_)
res=02—2w ’—cz—Zw(cl sk;) + e

= ¢, — (Cy, Zwsk}+2wlel

— (¢4, Sk) -+ Z wee;

=m

Instantiating the template

For security, e; values must completely hide the distribution of secret key
dependent error

For correctness, 2 w;e; should be sufficiently small™

l

**this depends on |w |

Instantiating the template

« What distribution do we use for ¢,?

* First proposed technique was statistical noise flooding (think: so much
extra noise you drown out signal of the other value entirely)

e But this causes problems!
If the gap here is ~ 2%

0 e e’ /2 q
. " Modulus must be > 2* as welll

Instantiating the template

 What do we use for the LSS?
« use Shamir secret sharing, but share size is O(Nlog(N)) per party,
 Ciphertext and decryption shares grow with N

. use “folklore” construction with w; ; € {0,1} but key size per party is
O(N%)

 So-called {0,1} LSS

Can we do better?

 Use a different LSS

* There are better {0,1} LSS schemes which imply smaller key sizes/more efficient
constructions [ANP23]

» Use smaller noise flooding™ (must still be large enough/shaped correctly to guarantee
security!)

* Can do this with constant noise flooding for Thresh. PKE w. some restrictions

e Can also do polynomially-sized noise flooding using Reyni divergence or new
Threshold-LWE assumption

 Limitation: only secure assuming an a-priori bounded number of decryption queries

Compare and Contrast ThPKE/ThFHE (what is known)

Noise Thresholds

Schemes Flooding Supported Functionality Other notes
Universal

Thresholdizer | Statistical All FHE
[BGG+17] o

\

P
BS23 //Polynomial \ Al Theke \ Reyni. poly-bounded number of

\ queries, weaker security notion

Known norm assumption, no

MS23 Constant -out-of-n ThPKE
known randomness

\
Pilvi (CLWZS\}\ Polynomii/ All \ThPKE //Poly—bounded number of queries

A

N — N—

Compare and Contrast ThPKE/ThFHE (what is known)

Noise Thresholds

Schemes Flooding Supported Functionality Other notes
Universal
Thresholdizer | Statistical All FHE
[BGG+17] — —_—
BN _
BS23 Polynomial Al Thrke (oY, Poly-bounded r?“mbe.rav
\Jueries, weaker security notion_,
MS23 Constant N-out-of-n ThPKE Known norfassumption, no

known randomness

> All Go-bor ¢ quored

Pilvi (CLW2 Polynomial ThPKE < Poly-bounded number of queries >
N -~

References

» [PS25] - Low Communication Threshold Fully Homomorphic Encryption. Passelegue and Stehlé. https://
eprint.iacr.org/2024/1984

* [MS23] - Simulation-Secure Threshold PKE from LWE with Polynomial Modulus. Micciancio and Suhl.
https://eprint.iacr.org/2023/1728

« [BS23] - Simple Threshold (Fully Homomorphic) Encryption From LWE With Polynomial Modulus.
Boudgoust and Scholl. https://eprint.iacr.org/2023/016

« [CLW] Pilvi: Lattice Threshold PKE with Small Decryption Shares and Improved Security. Cini, Lai, and
Woo. https://eprint.iacr.org/2025/1691

* [ANP23] - How to Recover a Secret with O(n) Additions. Applebaum, Nir Pinkas. https://eprint.iacr.org/
2023/838

« [BGG+17] Threshold Cryptosystems FromThreshold Fully Homomorphic Encryption. Boneh et al. https://
eprint.iacr.org/2017/956

