
Gabrielle Beck, 05/12/2025

State of the art of Lattice-Based
Threshold Cryptography

Some images in this presentation come from pictures
made by Eysa Lee licensed under CC BY 4.0

Postdoctorant au LIRMM avec Fabien et Katharina

What is fully homomorphic encryption (FHE)?
Say you want to compute a function f on some inputs but…

• f is a very large function (in depth or width)

• you don’t have much (relative) computation power

• your function input is sensitive (or you need access to someone
else’s private data to do the calculation)

What is fully homomorphic encryption (FHE)?

What types of functions can this capture?

• Intensive statistical calculations on databases w. PII

• Computations on medical data, genomic sequencing

• Other cryptographic primitives (e.g. private information retrieval)

What is FHE?
A public/private key pair

My
super-
secret

medical
data

What is FHE?

Haha
eiqm
roqm
reo4

What is FHE?

Haha
eiqm
roqm
reo4

What is FHE?
Haha
eiqm
roqm
reo4

jeq
mrqo
mdow

f

What is FHE?

jeq
mrqo
mdow

What is FHE?

Result of
prediagnostic

screen

What if we want different trust assumptions?

Suppose we have more than one client that wants to participate in the
computation… can we do the same thing as before?

f(x1, x2, x3)Goal: Compute

x1

x2

x3

What if we want different trust assumptions?

Suppose we have more than one client that wants to participate in the
computation… can we do the same thing as before?

djwuj

ruqnwRycnz

f(x1, x2, x3)Goal: Compute

What if we want different trust assumptions?

Suppose we have more than one client that wants to participate in the
computation… can we do the same thing as before?

djwuj ruqnw

Rycnz

f(x1, x2, x3)Goal: Compute

What if we want different trust assumptions?

Suppose we have more than one client that wants to participate in the
computation… can we do the same thing as before?

Problem: We don’t want to trust just one client!

jda
kle
qmr

Break up the secret key! (Use Threshold Cryptography)

Secret key is split into secret key shares

jda
kle
qmr

Break up the secret key! (Use Threshold Cryptography)

Break up the secret key! (Use Threshold Cryptography)

f(x1, …, xn)

All parties combine decryption shares
to get a result!

Lattice-based cryptography

• Threshold FHE schemes in cryptography are built off of lattice-based
assumptions

• Most constructions from unstructured lattices in some shape or form rely
on the learning with errors problem (LWE)

Learning with Errors (high level)

• Distinguish “noisy samples” from a matrix multiplication with uniformly
random values

s
+ e ≈A A A u(())

, ,

Structure of decryption for LWE-based constructions

• Decryption for these schemes is usually simple

• Ciphertext is a vector and an element

• We decrypt using a secret key

• Compute

• Round off the error

(⃗c1, c2) ∈ ℤm
q × ℤq

⃗s ∈ ℤm
q

c2 − ⟨ ⃗s, ⃗c1⟩ ≈ m + e

e

Structure of decryption for LWE-based constructions

• Decryption for these schemes is usually simple

• Ciphertext is a vector and an element

• We decrypt using a secret key

• Compute

• Round off the error

(⃗c1, c2) ∈ ℤm
q × ℤq

⃗s ∈ ℤm
q

c2 − ⟨ ⃗s, ⃗c1⟩ ≈ m + e

e

Important Note! depends on (normally fine for single decryptor setting)e ⃗s

A template for Threshold FHE from lattices

• Linear secret sharing (LSS) can allow us to secret share a vector into
multiple shares

• Given a large enough set , and shares , there exists
coefficients such that you can recover the secret vector 

⃗s ∈ ℤq
⃗s1, …, ⃗sn

T ⊆ [n] ⃗s1, …, ⃗sT
w1, …, wT

⃗s =
T

∑
i=1

wi ⃗si

A template for Threshold FHE from lattices

• Split the secret key for the encryption scheme into shares

• During decryption do the first part of “normal decryption” on the ciphertext

• Works because reconstruction is linear

{ ⃗ski}i∈[n] ← 𝖲𝗁𝖺𝗋𝖾(⃗sk, n, t)

Partial decryption on can be computed as:

(⃗c1, c2) c′￼i = ⟨ ⃗c1, ⃗ski⟩ + ei

Shares can be combined to get output as res = c2 − ∑
i

wic′￼i

A template for Threshold FHE from lattices

res = c2 − ∑
i

wic′￼i = c2 − ∑
i

wi⟨ ⃗c1, ⃗ski⟩ + ei

= c2 − ⟨ ⃗c1, ∑
i

wi
⃗ski⟩ + ∑

i

wiei

= c2 − ⟨ ⃗c1, ⃗sk⟩ + ∑
i

wiei

= m + e + ∑
i

wiei

Instantiating the template

For security, values must completely hide the distribution of secret key
dependent error

For correctness, should be sufficiently small**

ei

∑
i

wiei

**this depends on |wi |

Instantiating the template

• What distribution do we use for ?

• First proposed technique was statistical noise flooding (think: so much
extra noise you drown out signal of the other value entirely)

• But this causes problems!

ei

q0 q/2e e’

If the gap here is ≈ 2λ

Modulus must be as well!> 2λ

Instantiating the template

• What do we use for the LSS?

• use Shamir secret sharing, but share size is per party,

• Ciphertext and decryption shares grow with

• use “folklore” construction with but key size per party is

• So-called {0,1} LSS

O(N𝗅𝗈𝗀(N))

N

wi,j ∈ {0,1}
O(N4)

Can we do better?

• Use a different LSS

• There are better {0,1} LSS schemes which imply smaller key sizes/more efficient
constructions [ANP23]

• Use smaller noise flooding** (must still be large enough/shaped correctly to guarantee
security!)

• Can do this with constant noise flooding for Thresh. PKE w. some restrictions

• Can also do polynomially-sized noise flooding using Reyni divergence or new
Threshold-LWE assumption

• Limitation: only secure assuming an a-priori bounded number of decryption queries

Compare and Contrast ThPKE/ThFHE (what is known)

Schemes Noise
Flooding

Thresholds

Supported Functionality Other notes

Universal
Thresholdizer

[BGG+17]
Statistical All FHE

BS23 Polynomial All ThPKE Reyni, poly-bounded number of
queries, weaker security notion

MS23 Constant N-out-of-n ThPKE Known norm assumption, no
known randomness

Pilvi (CLW25) Polynomial All ThPKE Poly-bounded number of queries

Compare and Contrast ThPKE/ThFHE (what is known)

Schemes Noise
Flooding

Thresholds

Supported Functionality Other notes

Universal
Thresholdizer

[BGG+17]
Statistical All FHE

BS23 Polynomial All ThPKE Reyni, poly-bounded number of
queries, weaker security notion

MS23 Constant N-out-of-n ThPKE Known norm assumption, no
known randomness

Pilvi (CLW25) Polynomial All ThPKE Poly-bounded number of queries

References
• [PS25] - Low Communication Threshold Fully Homomorphic Encryption. Passelègue and Stehlé. https://

eprint.iacr.org/2024/1984

• [MS23] - Simulation-Secure Threshold PKE from LWE with Polynomial Modulus. Micciancio and Suhl.
https://eprint.iacr.org/2023/1728

• [BS23] - Simple Threshold (Fully Homomorphic) Encryption From LWE With Polynomial Modulus.
Boudgoust and Scholl. https://eprint.iacr.org/2023/016

• [CLW] Pilvi: Lattice Threshold PKE with Small Decryption Shares and Improved Security. Cini, Lai, and
Woo. https://eprint.iacr.org/2025/1691

• [ANP23] - How to Recover a Secret with O(n) Additions. Applebaum, Nir Pinkas. https://eprint.iacr.org/
2023/838

• [BGG+17] Threshold Cryptosystems FromThreshold Fully Homomorphic Encryption. Boneh et al. https://
eprint.iacr.org/2017/956

