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Cryptography

� The word cryptography is composed of the two ancient Greek words kryptos (hidden)
and graphein (to write). Its goal is to provide secure communication.

Encryption

Digital Signatures

Zero-Knowledge Proofs

Fully-Homomorphic Encryption

Katharina Boudgoust (CNRS, LIRMM) Lattice-Based Cryptography 12th July 2024, ICO Montpellier 2 / 29



Cryptography

� The word cryptography is composed of the two ancient Greek words kryptos (hidden)
and graphein (to write). Its goal is to provide secure communication.

Encryption

Digital Signatures

Zero-Knowledge Proofs

Fully-Homomorphic Encryption

Katharina Boudgoust (CNRS, LIRMM) Lattice-Based Cryptography 12th July 2024, ICO Montpellier 2 / 29



Context

� The security in public-key cryptography relies on presumably hard mathematical
problems.

Currently used problems:

Discrete logarithm

Factoring

Given N , find p, q such that N = p · q

� ∃ poly-time quantum algorithm [Sho97]∗

Quantum-resistant candidates:

Codes

Lattices

⇒ TODAY

Isogenies

Multivariate systems

?

⋆Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer,
SIAM Journal of Computations 1997
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US National Institute of Standards and Technology (NIST) Project �

2016: start of NIST’s post-quantum cryptography project⋆

2022: selection of 4 schemes, 3 of them relying on lattice problems

µ Public Key Encryption:

Kyber

Ò Digital Signature:

Dilithium

Falcon

SPHINCS+

� Lattice-based cryptography plays a leading role in designing post-quantum
cryptography.

⋆https://csrc.nist.gov/projects/post-quantum-cryptography
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Really Post-Quantum?

ia.cr/2024/555

ERROR IN PROOF!
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Overview of Today’s Presentation

v Questions we are trying to answer today:

Part 1: What are lattices?

Part 2: What are lattice problems?

Part 3: What is lattice-based cryptography?

Part 4: What are some (of my) current challenges?

� References:

The Lattice Club [website]

Crash Course Spring 2022 [lecture notes]
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https://katinkabou.github.io/Documents/PhDCourse_LatticeHardnessAssumptions.pdf


Part 1:

What is a lattice?
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Euclidean Lattices

� An Euclidean lattice Λ is a discrete additive subgroup of Rn.

additive subgroup: 0 ∈ Λ, and for all x,y ∈ Λ it holds x+ y,−x ∈ Λ;

discrete: every x ∈ Λ has a neighborhood in which x is the only lattice point.
∃ε > 0 such that B(x, ε) ∩ Λ = {x }

There exists a finite basis B = (b1, . . . ,bn) ⊂ Rn such that

Λ(B) =

{
n∑

i=1

zibi : zi ∈ Z

}
.

n is the dimension of Λ
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Euclidean Lattices

Let B ∈ Rn×n be a basis for Λ, i.e.,

Λ(B) =

{
n∑

i=1

zibi : zi ∈ Z

}
= {Bz : z ∈ Zn} .
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b̃1
b̃2

U ∈ Zn×n unimodular, then B̃ = B ·U also a basis of Λ det(U) = ±1
det(Λ) := |det(B)|

Λ ∈ R2
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Lattice Minimum & Special Lattices

The minimum of a lattice Λ ⊂ Rn is defined as

λ1(Λ) = min
x∈Λ\{0}

∥x∥2.

Let A ∈ Zm×n
q for some n,m, q ∈ N with n ≤ m Zq integers modulo q

Λq(A) = {y ∈ Zm : y = As mod q for some s ∈ Zn}
q-ary lattice

Am

n
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Part 2:

What are lattice problems?
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Bounded Distance Decoding

Given a lattice Λ ∈ Rn of dimension n and a
target t ∈ Rn such dist(Λ, t) ≤ δ < λ1(Λ)/2.

The bounded distance decoding (BDDδ)
problem asks to find the unique vector w ∈ Λ
such that

∥w − t∥2 ≤ δ.

The complexity of BDDδ increases with n and
with δ.

Conjecture:

There is no polynomial-time classical or

quantum algorithm that solves BDDδ on any

lattice to within inverse polynomial factors.

b1b2

t δ

w
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Learning With Errors [Reg05]⋆

Given a matrix A← Unif(Zm×n
q ).

Given a vector b ∈ Zm
q , where b = As+ e mod q for

secret s ∈ Zn
q sampled from distribution Ds and

noise/error e ∈ Zm sampled from distribution
De such that ∥e∥2 ≤ δ ≪ q.

Search learning with errors (S-LWEδ) asks to find s.

Decision learning with errors (D-LWEδ) asks to
distinguish (A,b) from the uniform distribution over

Zm×n
q × Zm

q .

� The present noise makes S-LWE a hard problem.

� The norm restriction on e makes D-LWE a hard
problem!

A , A

s

+ em

n

≈ uniform

→ find s

� S-LWEδ equals BDDδ in the lattice Λq(A) = {y ∈ Zm : y = As mod q, s ∈ Zn}.

⋆Regev, On lattices, learning with errors, random linear codes, and cryptography, STOC’05
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Part 3:

What is lattice-based cryptography?
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Public-Key Encryption (PKE)

A public-key encryption scheme Π = (KGen,Enc,Dec) consists of three algorithms:

KGen(1λ)→ (sk, pk) λ security parameter

Enc(pk,m)→ ct

Dec(sk, ct) = m′

Correctness: Dec(sk,Enc(pk,m)) = m during an honest execution

Semantic Security: Enc(pk,m0) is indistinguishable from Enc(pk,m1)
(IND-CPA)
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Public-Key Encryption from LWE [Reg05]

Let χ be distribution on Z.

KGen(1λ):
▶ A← Unif(Zn×n

q ) and s, e← χn

▶ b = As+ e mod q
▶ Output sk = s and pk = (A,b)

Enc(pk,m ∈ {0, 1}):
▶ r, f ← χn and f ′ ← χ
▶ u = rA+ f
▶ v = rb+ f ′ + ⌊q/2⌋ ·m
▶ Output ct = (u, v)

Dec(sk, ct):
▶ If v − us is closer to 0 than to q/2, output m′ = 0
▶ Else output m′ = 1

A , A s + e = b

r A b + f f ′ + m

∗
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Semantic Security: Assume hardness of decision LWE

1. replace b by uniform random vector

2. replace non-message part (∗) by uniform random vector

3. then the message is completely hidden

A , A s + e = b

r A b + f f ′ + m

∗
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Kyber - Selected for Standardization by NIST

� Kyber = the previous construction + several improvements

Main improvements:

1. Structured LWE variant (most important)

2. LWE secret and noise from centered binomial distribution

3. Pseudorandomness for distributions

4. Ciphertext compression

Sources:

Website of Kyber: https://pq-crystals.org/kyber/

Latest specifications [link]

Tutorial by V. Lyubashevsky [link]
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Example Parameters for Learning With Errors

Kyber Parameters:

A ∈ Zn×m
q , s← Ds, e← De

m = ?

n = ?

q = ?

De = ?

Ds = ?

A , A

s

+ em

n

≈ uniform

→ find s

n q ∥e∥∞ security bits

512 3329 3 118
768 3329 2 183
1024 3329 2 256

⋆https://github.com/malb/lattice-estimator
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Part 4:

What are (my) current challenges?
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Reminder: Public-Key Encryption (PKE)

A public-key encryption scheme Π = (KGen,Enc,Dec) consists of three algorithms:

KGen(1λ)→ (sk, pk) λ security parameter

Enc(pk,m)→ ct

Dec(sk, ct) = m′

� The secret key sk can be seen as a single point of failure.

Someone else learns it: security issue

I loose it: operability issue
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Dec(sk, ct) = m′

� The secret key sk can be seen as a single point of failure.

Someone else learns it: security issue

I loose it: operability issue
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Motivation Threshold Cryptography [DF89]⋆

� The secret key can be seen as a single point of failure.

� Idea: divide the secret key into multiple shares

µ Better security: multiple secret key shares needed

2 Better operability: not necessarily all secret key shares needed

⋆Desmedt and Frankel, Threshold Cryptosystems, CRYPTO’89
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Threshold Public-Key Encryption

PKE scheme:

KGen→ (pk, sk)

Enc(pk,m)→ ct m ∈ {0, 1}
Dec(sk, ct)→ m

Properties:

Correctness t parties can recover the message

Security less than t parties learn nothing about message

Applications:

Encrypting highly sensitive data

Electronic voting protocols
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Threshold Public-Key Encryption

t-out-of-n Threshold PKE scheme:
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Research Question

Can we construct

Threshold Public-Key Encryption

based on Euclidean Lattices?

Yes, but . . .

Either: Or: Or:

OPEN:

Inefficient Efficient Efficient

Efficient

Strong Security Weaker Security Strong Security

Strong Security

Any distributions Any distributions Only Gaussians

Any distributions

[BD10]⋆ [BS23]⋆

[MS23]⋆

⋆Bendlin and Damgaard, Threshold decryption and zero-knowledge proofs for lattice-based cryptosystems,
TCC’10

⋆Boudgoust and Scholl, Simple threshold (fully homomorphic) encryption from LWE with polynomial
modulus, Asiacrypt’23

⋆Micciancio and Suhl, Simulation-Secure Threshold PKE from LWE with Polynomial Modulus, e-print’23
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Reminder: Public-Key Encryption from LWE [Reg05]

Let χ be distribution on Z.

KGen(1λ):
▶ A← Unif(Zn×n

q ) and s, e← χn

▶ b = As+ e mod q
▶ Output sk = s and pk = (A,b)

Enc(pk,m ∈ {0, 1}):
▶ r, f ← χn and f ′ ← χ
▶ u = rA+ f
▶ v = rb+ f ′ + ⌊q/2⌋ ·m
▶ Output ct = (u, v)

Dec(sk, ct):
▶ If v − us is closer to 0 than to q/2, output m′ = 0
▶ Else output m′ = 1

Correctness:

v − us = r(As+ e) + f ′ + ⌊q/2⌋ ·m− (rA+ f)s

= re+ f ′ − fs+ ⌊q/2⌋m

Decryption succeeds if |∗| < q/8

A , A s + e = b

r A b + f f ′ + m

∗ ciphertext noise
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US National Institute of Standards and Technology (NIST) Project �

2023: initial public draft for Multi-Party Threshold Cryptography⋆

2025: expected submission?

� Threshold cryptography attracts a lot of research interest at the moment.

⋆https://csrc.nist.gov/Projects/threshold-cryptography
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Bonus:

A little Quiz :-)
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Wrap-Up

v Hopefully you have now a rough idea:

Part 1: What lattices are!

Part 2: What lattice problems are!

Part 3: What lattice-based cryptography is!

Part 4: What (my) particular challenges are!

Any questions or interested in my research?

7 Reach out to me today

� Write me an e-mail

Merci !
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